DSCAMs: restoring balance to developmental forces
نویسندگان
چکیده
Many of the models of neurodevelopmental processes such as cell migration, axon outgrowth, and dendrite arborization involve cell adhesion and chemoattraction as critical physical or mechanical aspects of the mechanism. However, the prevention of adhesion or attraction is under-appreciated as a necessary, active process that balances these forces, insuring that the correct cells are present and adhering in the correct place at the correct time. The phenomenon of not adhering is often viewed as the passive alternative to adhesion, and in some cases this may be true. However, it is becoming increasingly clear that active signaling pathways are involved in preventing adhesion. These provide a balancing force during development that prevents overly exuberant adhesion, which would otherwise disrupt normal cellular and tissue morphogenesis. The strength of chemoattractive signals may be similarly modulated. Recent studies, described here, suggest that Down Syndrome Cell Adhesion Molecule (DSCAM), and closely related proteins such as DSCAML1, may play an important developmental role as such balancers in multiple systems.
منابع مشابه
Replacing the PDZ-interacting C-termini of DSCAM and DSCAML1 with epitope tags causes different phenotypic severity in different cell populations
Different types of neurons in the retina are organized vertically into layers and horizontally in a mosaic pattern that helps ensure proper neural network formation and information processing throughout the visual field. The vertebrate Dscams (DSCAM and DSCAML1) are cell adhesion molecules that support the development of this organization by promoting self-avoidance at the level of cell types, ...
متن کاملControl of Movement Initiation Underlies the Development of Balance
Balance arises from the interplay of external forces acting on the body and internally generated movements. Many animal bodies are inherently unstable, necessitating corrective locomotion to maintain stability. Understanding how developing animals come to balance remains a challenge. Here we study the interplay among environment, sensation, and action as balance develops in larval zebrafish. We...
متن کاملA Modified Energy Balance Method to Obtain Higher-order Approximations to the Oscillators with Cubic and Harmonic Restoring Force
This article analyzes a strongly nonlinear oscillator with cubic and harmonic restoring force and proposes an efficient analytical technique based on the modified energy balance method (MEBM). The proposed method incorporates higher-order approximations. After applying the proposed MEBM, a set of complicated higher-order nonlinear algebraic equations are obtained. Higher-order nonlinear algebra...
متن کاملThe role of elastic restoring forces in right-ventricular filling.
AIMS The physiological determinants of RV diastolic function remain poorly understood. We aimed to quantify the contribution of elastic recoil to RV filling and determine its sensitivity to interventricular interaction. METHODS AND RESULTS High-fidelity pressure-volume loops and simultaneous 3-dimensional ultrasound sequences were obtained in 13 pigs undergoing inotropic modulation, volume ov...
متن کاملSelf-Recognition at the Atomic Level: Understanding the Astonishing Molecular Diversity of Homophilic Dscams
The Drosophila Dscams are immunoglobulin superfamily members produced from a single gene that is diversified by alternative splicing to produce a family of cell-surface proteins with over 19,000 different ectodomain isoforms. Dscams are critical for neuronal wiring, and mounting evidence suggests that they play a key role in self-avoidance between sister branches from neurons, which depends on ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2012